Uma equipa de investigadores da Universidade de Coimbra (UC) criou um modelo computacional inovador que pode vir a tornar mais rápido e menos dispendioso o desenvolvimento de novos fármacos para serem aplicados no tratamento de cancro, focados no contexto biológico da doença. Os resultados do estudo foram publicados na revista “Briefings In Bioinformatics”.
Considerando que a descoberta de um fármaco é um processo extremamente complexo, moroso e dispendioso, este trabalho, que resulta de uma colaboração entre a Faculdade de Ciências e Tecnologia (FCTUC) e a Faculdade de Farmácia (FFUC) da UC, teve como objetivo encurtar as etapas iniciais de desenvolvimento de fármacos, recorrendo à Inteligência Artificial (IA), através de métodos computacionais que consigam gerar compostos farmacologicamente interessantes de uma forma mais rápida e automatizada.
Os investigadores utilizaram também o designado Reinforcement Learning (aprendizagem por reforço), que permite otimizar o modelo generativo durante a exploração do espaço químico existente. «À medida que o modelo gera novas moléculas, ele recebe uma recompensa, que será maior ou menor, dependendo do estado de otimização das propriedades dos compostos. Assim, ao longo deste processo de otimização, o gerador de compostos vai aprender a identificar as regiões do espaço químico que lhe permitam obter maior recompensa e melhores compostos», refere o investigador da FCTUC.
O modelo desenvolvido é inovador porque, explicam os autores, «é um modelo que combina informação química, através dos compostos, e biológica, por via de informação da expressão génica, de modo a encontrar moléculas promissoras na inibição do recetor e que não causem efeitos indesejados ao sistema biológico».
Com a colaboração do laboratório do professor Jorge Salvador da FFUC, foi possível aplicar o modelo num caso de estudo para a geração de compostos capazes de inibir a proteína USP7 (Ubiquitin specific protease 7). Esta proteína, sublinha Tiago Oliveira Pereira, assume um papel fundamental «na progressão de vários tipos de cancro e, atualmente, é vista como um recetor importante para o desenvolvimento de fármacos».
Apesar de ter sido validado com dados de cancro da mama, o novo modelo computacional pode ser aplicado a «diversos contextos em que se possam obter dados de expressão génica associados à progressão da doença», explica o investigador, adiantando ainda que os próximos passos da investigação vão incidir na melhoria da arquitetura implementada e na «definição de um conjunto de métodos de validação para filtrar as moléculas obtidas e, dependendo dos resultados, avançar para a síntese dos melhores compostos».
Este estudo foi cofinanciado pela Fundação para a Ciência e a Tecnologia (FCT), pelo Programa de Investimento e Despesas de Desenvolvimento da Administração Central (PIDDAC) e por fundos europeus, através do projeto D4-Deep Drug Discovery and Deployment.
O artigo científico está disponível: https://doi.org/10.1093/bib/bbac270.
Legenda da foto: da esquerda para a direita da foto_Joel P. Arrais (investigador principal), Maryam Abbasi (investigadora auxiliar) e Tiago Oliveira Pereira (primeiro autor do estudo).